Managing Sepsis at a Cellular Level

I want to begin this article with a scenario: say sepsis due to MRSA (methicillin-resistant Staphylococcus aureus) is documented by the clinician and ICD-10-CM code A41.02 is captured by the coder. Assume that there are no secondary diagnoses or procedures. This leads to the assignment of MS-DRG (Medicare Severity Diagnosis-Related Group) 872 with a relative weight of 1.0283 and APR-DRG (All Patient Refined Diagnosis-Related Group) 720 with SOI (severity of illness) of 2, ROM (risk of mortality) of 1, and relative weight of 0.7191. 

The concepts and algorithms of DRGs are complex. In a similar fashion, the molecular and cellular processes underlying sepsis are complicated. A synopsis of these processes will provide insight into the challenges inherent in managing the protean manifestations of sepsis and will facilitate navigation through the medical record, generation of queries, and dialogue with clinicians, with respect to capturing sepsis as a principal or secondary diagnosis.

Sepsis arises due to a dysregulated immune response. PAMPs (pathogen associated molecular patterns), such as peptidoglycan and lipoteichoic acid (from gram-positive bacteria) and lipopolysaccharide (from gram-negative bacteria) incite the immune system by binding to PRRs (pattern recognition receptors), including TLRs (toll-like receptors) expressed on the surface of macrophages. This leads to pro-inflammatory and anti-inflammatory cytokine cascades with ensuing organ dysfunction and failure characteristic of sepsis, severe sepsis, and septic shock, as well as the SOFA and qSOFA scores.

Associated with these factors is a discussion regarding the administration of antibiotics for the management of sepsis. Depending on the causal organisms and the possibility of multi-drug resistance, different classes of antibiotics are initially prescribed for sepsis and cover a wide range of aerobic, anaerobic, gram-positive, and gram-negative bacteria. Based on culture and sensitivity studies, the regimen can be narrowed to one antibiotic. If the patient’s clinical status does not improve or worsens, new classes of antibiotics should be added to the regimen, or the entire regimen may need to be modified.

There are specific rationale regarding the use of several classes of antibiotics prescribed for sepsis: Zosyn, Vancocin, Avelox, and Flagyl.

Zosyn is comprised of piperacillin and tazobactam. Piperacillin is a fourth-generation ureidopenicillin that contains a β-lactam ring that binds DD-transpeptidase, a penicillin-binding protein. This inhibits cross-linking of peptidoglycans and cell wall synthesis, leading to bacteria cell wall lysis. Several bacteria strains possess β-lactamase, which destroys the β-lactam ring and neutralizes piperacillin. In order to circumvent this problem, tazobactam prevents the degradation of piperacillin by inhibiting the action of β-lactamase.

While Zosyn can treat many types of infections, it has limited efficacy against MRSA (methicillin-resistant Staphylococcus aureus). The mecA gene of MRSA encodes for penicillin-binding protein 2a, which does not bind the β-lactam ring and confers resistance to piperacillin.

This explains why Vancocin (vancomycin) is prescribed with Zosyn.  Vancocin is a glycopeptide antibiotic that does not possess a β-lactam ring and destroys MRSA via a mechanism distinct from Zosyn. Vancocin binds the terminal D-alanyl-D-alanine amino acid sequence of NAM (N-acetylmuramic acid) and NAG (N-acetylglucosamine), which comprise the backbone of the cell wall. By preventing the formation of the NAM and NAG polymers, Vancocin disrupts the integrity of the cell wall.

Avelox (moxifloxacin) is a fourth-generation fluoroquinolone that is used effectively against many strains of gram-positive and gram-negative bacteria. Avelox inhibits DNA gyrase and topoisomerase IV. DNA gyrase is an enzyme that relieves the strain caused by helicase, as it unwinds the DNA during bacteria replication. Topoisomerase IV is an enzyme that unlinks DNA following replication and also relieves the strain caused by helicase. Together, DNA gyrase and topoisomerase IV generate double-stranded DNA breaks to relieve the strain of the positive DNA supercoils and therefore allow DNA polymerase to replicate the strands of bacteria DNA. The binding of Avelox to DNA gyrase and topoisomerase IV creates complexes termed “topoisomerase poisons” that cleave the bacterial DNA into fragments, resulting in cell death. Since the mechanism of action of Avelox is distinct from Zosyn and Vancocin, Avelox can target strains of bacteria that may be resistant to Zosyn or Vancocin.

Flagyl (metronidazole) belongs to the nitroimidazole class of antibiotics and can treat sepsis caused by anaerobic bacteria, such as Bacteroides fragilis and Clostridium perfringens. In anaerobic bacteria, Flagyl is reduced by pyruvate: ferredoxin oxidoreductase to free radicals. The free radicals, in turn, cause DNA strand breakage, DNA helix destabilization, and death of anaerobic bacteria. Since the pyruvate-ferredoxin oxidoreductase  reaction typically does not take place in aerobic bacteria, Flagyl has minimal effect on aerobic bacteria.

In short, an appreciation of the mechanism of action of different classes of antibiotics can shed light on the complexity in managing sepsis.

Facebook
Twitter
LinkedIn

Wilbur Lo, MD, CDIP, CCA, AHIMA-Approved ICD-10-CM/PCS Trainer

Dr. Wilbur Lo is Chief Medical and CDI Officer for cdiWorks, a Physician CDI consulting company. A US-trained Physician, Dr. Lo obtained his medical degree from the University of Toledo College of Medicine and completed a Residency in Anatomic and Clinical Pathology at Allegheny University Hospitals. During his Postdoctoral Fellowship at Vanderbilt University Medical Center, Dr. Lo conducted research in Renal Pathology and published in a peer-reviewed journal, Kidney International. At present, Dr. Lo is Lead Physician CDI consultant for a hospital in New York City. Outside the US, Dr. Lo has served as Physician CDI content and curriculum expert for AHIMA and AHIMA World Congress. Dr. Lo has extensive domestic and international CDI experience, with respect to MS-DRG, APR-DRG, IR-DRG and AR-DRG payment models.

Related Stories

Leave a Reply

Please log in to your account to comment on this article.

Featured Webcasts

2026 IPPS Masterclass 3: Master MS-DRG Shifts and NTAPs

2026 IPPS Masterclass Day 3: MS-DRG Shifts and NTAPs

This third session in our 2026 IPPS Masterclass will feature a review of FY26 changes to the MS-DRG methodology and new technology add-on payments (NTAPs), presented by nationally recognized ICD-10 coding expert Christine Geiger, MA, RHIA, CCS, CRC, with bonus insights and analysis from Dr. James Kennedy.

August 14, 2025
2026 IPPS Masterclass Day 2: Master ICD-10-PCS Changes

2026 IPPS Masterclass Day 2: Master ICD-10-PCS Changes

This second session in our 2026 IPPS Masterclass will feature a review the FY26 changes to ICD-10-PCS codes. This information will be presented by nationally recognized ICD-10 coding expert Christine Geiger, MA, RHIA, CCS, CRC, with bonus insights and analysis from Dr. James Kennedy.

August 13, 2025
2026 IPPS Masterclass 1: Master ICD-10-CM Changes

2026 IPPS Masterclass Day 1: Master ICD-10-CM Changes

This first session in our 2026 IPPS Masterclass will feature an in-depth explanation of FY26 changes to ICD-10-CM codes and guidelines, CCs/MCCs, and revisions to the MCE, presented by presented by nationally recognized ICD-10 coding expert Christine Geiger, MA, RHIA, CCS, CRC, with bonus insights and analysis from Dr. James Kennedy.

August 12, 2025

Trending News

Featured Webcasts

The Two-Midnight Rule: New Challenges, Proven Strategies

The Two-Midnight Rule: New Challenges, Proven Strategies

RACmonitor is proud to welcome back Dr. Ronald Hirsch, one of his most requested webcasts. In this highly anticipated session, Dr. Hirsch will break down the complex Two Midnight Rule Medicare regulations, translating them into clear, actionable guidance. He’ll walk you through the basics of the rule, offer expert interpretation, and apply the rule to real-world clinical scenarios—so you leave with greater clarity, confidence, and the tools to ensure compliance.

June 19, 2025
Open Door Forum Webcast Series

Open Door Forum Webcast Series

Bring your questions and join the conversation during this open forum series, live every Wednesday at 10 a.m. EST from June 11–July 30. Hosted by Chuck Buck, these fast-paced 30-minute sessions connect you directly with top healthcare experts tackling today’s most urgent compliance and policy issues.

June 11, 2025
Open Door Forum: The Changing Face of Addiction: Coding, Compliance & Care

Open Door Forum: The Changing Face of Addiction: Coding, Compliance & Care

Substance abuse is everywhere. It’s a complicated diagnosis with wide-ranging implications well beyond acute care. The face of addiction continues to change so it’s important to remember not just the addict but the spectrum of extended victims and the other social determinants and legal ramifications. Join John K. Hall, MD, JD, MBA, FCLM, FRCPC, for a critical Q&A on navigating substance abuse in 2025.  Register today and be a part of the conversation!

July 16, 2025

Trending News

Prepare for the 2025 CMS IPPS Final Rule with ICD10monitor’s IPPSPalooza! Click HERE to learn more

Get 15% OFF on all educational webcasts at ICD10monitor with code JULYFOURTH24 until July 4, 2024—start learning today!

CYBER WEEK IS HERE! Don’t miss your chance to get 20% off now until Dec. 2 with code CYBER24